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Abstract 

A reduction of a Poisson manifold using the ideal 1 (J) generated by the momentum map was 
introduced by Sniatycki and Weinstein (1983). This reduction has been extended to nonzero mo- 
mentum values # by two methods: by shifting to zero momentum on a larger space, the product 
with the coadjoint orbit; and by the method of Wilbour and Kimura (1991, 1993) using the modified 
ideal 1 (J - / ~ ) .  It is shown that these two methods produce isomorphic reduced algebras under 
the assumptions that the symmetry group is connected and that the stabilizer group of/~ also is 
connected. If the latter assumption fails, the shifted reduced algebra is isomorphic to a (possibly 
proper) subalgebra of the Wilbour-Kimura algebra. 
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I.  Introduct ion 

Classically, the goal of  reduction of  a symplectic manifold with symmetry is to produce 

a smaller symplectic manifold. Specifically, suppose there exists an equivariant momentum 

map for the group action (i.e. the symmetry).  The level set of  a regular value of  the mo- 

mentum map is a submanifold, and if the group action on this level set is fibrating, then the 

orbit space of  the level set inherits a natural symplectic structure. This is the (geometric) 

reduction of  Meyer  [10], and Marsden and Weinstein [9]. 

This basic reduction has been generalized and extended in a number of  ways. (For a 

survey see [ 13] and references therein.) One of  the earliest was a construction of  Sniatycki 

and Weinstein [ l l ]. Their approach is reminiscent of  algebraic geometry in that it works 

with the Poisson algebra of  functions rather than with the manifold, and produces a reduced 

algebra but no reduced space. Sniatycki and Weinstein showed that at least in some cases, 
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this algebra carries information about the geometric quantization of the system that is lost 

by more geometric methods of reduction. More recent work has shown that this reduced 

algebra is isomorphic to the zero-dimensional classical BRST cohomology [2]. 
For this algebraic reduction, the original definition applied only to the zero value of mo- 

mentum - or, by a trivial extension, to values fixed by the coadjoint action. Geometrically, 

the difficulty is that some nonzero level sets are not coisotropic. (The corresponding al- 
gebraic difficulty is described in Section 2.) Two methods for handling the difficulty have 
been developed. The "shifting trick" transforms the problem of reduction at a nonzero 

value of momentum to reduction at zero in a larger space. When this method is applied 

to the geometric reduction, it produces results isomorphic to those of  the usual Meyer, 
Marsden-Weinstein (MMW) reduction [3, Section 26; 7]. 

A second method, appearing in work of Wilbour [12,13] and Kimura [5], works within 

the function algebra on the original space. The main result of the present paper is that under 
relatively mild assumptions, the shifting trick and the Wilbour-Kimura method produce 

isomorphic reduced algebras. The assumptions are that the original group is connected and 
that the stabilizer subgroup of the momentum value (under the coadjoint action) also is 

connected. When the latter assumption fails, a modified version of the shifting trick yields 
a reduced algebra isomorphic to the Wilbour-Kimura algebra. 

Section 2 establishes notation and describes the algebraic reduction, the Wilbour-Kimura 

construction, and the shifting trick. Section 3 states the main result precisely, and discusses 

the main ideas used in the proofs. The proofs themselves appear in Section 4. 

2. Notation and basic constructions 

This section describes the algebraic reduction for zero momentum values. Then two 
methods of extending this reduction to nonzero values are presented: the shifting method 
and the Wilbour-Kimura (WK) method. 

Let (79, { , }) be a Poisson manifold, and suppose that there is a Hamiltonian action of 
a connected Lie group G on 79; that is, an action by Poisson maps with equivariant map J .  
The action will be variously denoted by qS(g, p) = ~g(p )  _~ g.  p. For ~ in the Lie algebra 

.q of  G, let J~ = (J, ~), where the brackets ( , ) indicate the evaluation of .q* on .q. Recall 
that the defining property of  a momentum map is that for all A E C~(79),  

{A, J~} = da(¢p) ,  

where ~p is the infinitesimal generator on 79 corresponding to ~. Frequently sei, i = i . . . . .  k, 
will be a basis for .q, and then Ji = (J, sei). The (commutative) ideal generated by the 
components of  the momentum map is 

l ( J )  :=  {A E C~(79)  I A = AiJi for some Ai E C~(79)] .  

Note that 1 ( J )  is independent of  the choice of  basis for .q. (The Einstein summation con- 
vention on repeated indices will hold except where explicit summation notation indicates a 
sum over a subset of  the indicial values.) 
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For any (commutative) ideal I ,  define the Poisson normalizer of I to be 

N(1) :=  {a c C ~ ( 7  ~) [ {a, I} c I}. 

The Poisson structure on C ~ ( P )  induces a Poisson structure on 

N(I )  

I1 N N(1)]" (I) 

Equivariance of  J implies that the ideal I ( J )  is contained within its normalizer, so there is 

a natural Poisson structure on the quotient 

N ( I ( J ) )  
I ( J )  (2) 

This quotient algebra is the result of  the algebraic reduction of  [ 11 ]. (Actually, the def- 

inition in the reference is slightly different: it considers G-invariant equivalence classes 

in C~(7~) / I (J) .  But when G is connected, as is assumed in [1 i], this is equivalent to the 

definition (2).) If zero is a regular (or weakly regular) value of  J,  then the algebra (2) is natu- 

rally isomorphic to the algebra of  smooth functions on the reduced space J -1  (0 ) /G [ 1,1 1 ]. 

Restricting to the constraint set J - l ( 0 )  in constructing the reduced space corresponds to 

taking the quotient by l ( J )  in (2). 

Now consider a constraint set j - 1  (#) for a fixed nonzero value ~ 6 .q*. Let K = J - / ~ ,  

so K~ = {K, ~) and Ki = (K, ~i). Replace l ( J )  by 

I (K)  :=  {A ~ C a ( P )  ] A = AiKi for some A i E C~C(7:~)}. 

The ideal I (K) may not be contained in its normalizer N( I  (K)), even for regular values 

of  #.  (If the coadjoint orbit of  # is nontrivial then J - l ( # )  fails to be coisotropic. The latter 

implies that N (I (K)) does not contain I (K).) In this case we use (1) to define the reduced 

algebra 

N ( I ( K ) )  
AK :=  (3) 

[I(K) A N ( I ( K ) ) ] "  

If # is a regular value, then 1 (K)) is the ideal of  functions which vanish on j - l  (~). In this 

case Wilbour [ 12] (see also [5]) has shown that ,AK is the algebra of  functions on the MMW 

reduced space j - l  (O)/Gu ' where G u is the stabilizer subgroup of # under the coadjoint 

action. 

Earlier work handled the complications of  nonzero values of  momentum by a technique 

called "shifting". For a fixed value # in ,q*, shifting uses the coadjoint orbit (_9 of  # in ~*. 

As above, a centered dot will denote an action on the left; thus g • v denotes the coadjoint 
action by g - I  on v. There is a natural Poisson structure on (_9 given by 

{~, ~'}°(v) = <v, [~, ~']), 

where ~ and ~ are in ,q and thus are linear functions on ,q*. (This is the Poisson structure 

induced by the canonical (up to sign) symplectic form on O [8].) 
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Define a new Poisson manifold (~ ,  { , }~) as follows. Let ~ = 79 x O, with a typical 
point given by (p,  v) and pr~ect ions ~l (p,  v) = p and ~2 (P, v) = v. Also define injections 
iv : 79 --* ~ and ip : (9 ----> 79 by iv(p) = (p,  v) = ip(V). Then the Poisson bracket is given 

by 

{A, B}~(p,  v) = {,4o iv, B o iv}(p) - {Ao ip, B o ip}°  (v). 

(If 79 is a symplectic manifold, then the symplectic structure on P corresponding to the 
Poisson bracket {, } ~ is the difference of the pullbacks of the symplectic forms on 7 9 and 

O.) 
The actions on 79 and O induce an action ~ on 7~; the (equivariant) momentum map for 

this action is J = J o ~1 - ~2, i.e. J ( p ,  v) = J (p )  - v. The basic idea of the "shifting 

trick" is to use the zero value for J ' in  place of  the value/z for J .  For instance, in the M M W  
reduction, )"-1 (O)/G can be identified in a natural way with j - 1  (Iz) /Gu.  For the algebraic 

reduction, define the "shifted reduced algebra" by 

U ( l ( ~ ) )  
.AS := I (Y)  (4) 

3. Statement and discussion of results 

The main result of  this paper is the following. 

Theorem 1. Suppose that G is a connected Lie group and that there exists a Hamiltonian 

action o f  G on the Poisson manifold (7 9, { , }). l f  G u is connected, then at momentum value 

Iz there is a Poisson algebra isomorphism between the Wilbour-Kimura reduced algebra 

.AK in (3) and the shifted reduced algebra .As in (4). 

To identify key ideas in the construction of the isomorphism, consider first the special case 
in which G~, is compact. Let A be a function in N ( I ( K ) ) .  Proposition 3 proves that each 

equivalence class in .,4 K includes a Gv-invariant function, so assume A is Gv-invariant. 
Let B be the principal Gu-bundle (G, O, Gu),  and let s be a local section of B; then 

s(v) • ~ = v, 

and we can identify v with the coset s (v )Gu.  Define 

,~(p, v) ---- A(s(v)  -1 • p). (5) 

By the Gu-invariance of A, the extended function ,4 is well-defined independent of  the 
choice of  section s (because at each v the possible choices of  section differ by an element 
of  Gv). Furthermore ,4is  G-invariant on/~,  because s(g • v ) .  lz = g • v = g .  s(v) •/z, so 
s(g . v) - l  . g . s(v) 6 G u and 

A(g . (p, v)) = A ( g .  p , g .  v) 

= a ( s ( g ,  v) -1 • g .  p)  = A(s(v)  -1 • p) = A(p ,  v). 
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Therefore ,4 is in N ( I ( J ) ) ,  and it can be shown that the map from A to ,4 induces the 

required isomorphism. 

If G u is not compact, then there may be no Gu-invariant representative of  the equivalence 

class. However, if B is a trivial bundle, then we may fix a global section s and define the 

extension .4 by (5). Roughly speaking, functions in N(1 (K)) are those which are (locally) 

constant on the intersection of orbits with J - l ( # )  = K-1  (0): by definition A E N(I  (K)) 
if and only if 

{A, J} = {A, K} c I (K) ,  (6) 

so in particular 

{A, J} ---- 0 on K - l ( 0 ) .  (7) 

(In some cases I (K)  is a proper subset of  the ideal of functions that vanish on K - j  (0). 

Then (6) is stronger than (7), but the approximate statement suffices for the present heuristic 

discussion.) If  (p, v) E J - l ( 0 ) ,  by equivariance J(s(v) -1 . p) = s(v) -j • v = /z, i.e. 

s(v) - l  • p E K - l  (0). The Gu-invariance of  A on K -1 (0) and an argument similar to that 

of  the preceding paragraph, but restricted to )"-1 (0), show that the extension Z, in (5) is 

constant on G-orbits within that level set. This suffices in e.g. the nonsingular case to show 

that X 6 N(I  ()')), as before inducing the desired isomorphism. 

The proof of the main result combines the ideas of  these two special cases. The structure 

group of the principal bundle B can be reduced to a maximal compact subgroup H of  G~,. 
If G u is connected, then H is, also. The reduction of  the bundle implies that a set S of local 

sections of  the original bundle can be chosen so that their domains cover the base space CO 

and the associated transition functions take their values in H. The proofs below show the 

following. If H is connected then each equivalence class in .AK contains an H-invariant 

representative. For such invariant functions, the extension defined in (5) gives an element 

of  N(I (J ) ) .  The extension induces a Poisson map from .AK tO .As, which is shown to be 

an isomorphism. Furthermore, although the extension procedure (5) depends on the choice 

of sections, the induced map between the reduced algebras is independent of this choice. 

If' G u is not connected, then the maximal compact subgroup H also may be disconnected, 

and there may be classes in .AK that do not include an H-invariant representative. In this case 

it is possible to identify .AK with the results of  a modified shifting construction. Let Gu0 be 

the identity component of  G u and replace G u by Gu0, the orbit (,,9 by G/Guo, and H by a 

maximal compact subgroup of  Guo in all constructions and proofs. Then .AK is identified 

with a quotient of function spaces on i ° x (G/Guo).The latter is a covering space of 7 ~. The 

momentum on 10 x (G/Guo) is the composite of  J with the projection zr of  the covering. 

The modified proofs give an isomorphism of .AK with N(I ( ' Jo  zr ) ) / l ( ' fo  zr). There is a 
natural inclusion of  l ( J ' )  into I ()"o Jr) and of  U(t('J)) into U(l ( ' Jo  Jr)). Furthermore if 

,~ o zr 6 l ( J ' o  zr), then ,4 is in I ()") "locally" because zc is a Poisson covering map. The 
partition of unity argument before Lemma 5 then shows that A ~ I (J') globally. This means 

that the intersection of  I ()"o Jr) with the image of  N(1 (J))  equals the image of 1 (J) ,  so 
.As can be injected into .AK. An example can be constructed with G = Sl(2, ~) for which 

the inclusion is proper. 
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4. Proofs 

Composing a function in N(I (K)) with a translation by g E G yields another function in 
N (I (K)).  In later calculations, it will be important to know the exact form of the dependence 

on g of  the Poisson bracket of  such functions. This dependence is articulated in the following 

lemma. 

Lemma 2. Let ~ be a f ixed element o f  .q. I f  A E N (I  (K)),  then there are smooth functions 
A i, i = 1 . . . . .  k, on 79 x G such that 

{A o q~g, K~}(p) = {A o q~g, J~}(p) = Ai(p ,  g)Ki  o ~g(p ) .  

(Note that the Poisson bracket is computed on 7 9, i.e. with g held constant.) Also there are 

smooth functions B i, i = 1 . . . . .  k, on 79 x G such that if  g E G a, then 

{A o t~g,  K~}(p) ---- {A o t~g,  J~}(p) = Bi (p ,  g )K i (p ) ,  

so that A o ~ ~ N ( I  (K)).  

Proof. In each equation, the first equality holds because J and K differ by a constant in .q*. 

By the properties of  group actions and momentum maps, 

{A o tPs, J~}(p) = dA(d~g[~e(p) ] )  = d A [ ( A d g ~ ) p ( g ,  p)] = {A, JAa~}(g" P). 

There are smooth functions C i on G × .q such that 

Adg~ = Ci (g, ~ )~i . 

Combining the preceding equations and the fact A E N ( I  (K)) ,  we have the following: 

(A o ~g,  J~}(p) = Ci(g,  ¢){A, Ji)(g" P) 

= Ci(g,  ~){A, Ki} (g .  p)  

= CJ(g,  ~)D~(g .  p ) K i ( g ,  p). 

Recall that ~ is fixed. Define A i (g ~ p) : C j (g, ~ ) D~ (g • p) to obtain the first conclusion. 

For g ~ Glz, by equivariance Ki o C19g = g • Ki : (K, Adg-i~i).  Thus Ki o ~ g ( p )  : 
c j  ( g -  I, ~i ) g j .  The second conclusion follows with B j (g, p) : C j (g -  1, ~i ) Ai (P, g). 

[] 

Let H be a connected compact subgroup of  Ga.  Pick a bi-invariant Riemannian metric 
on H with total volume equal to one. For A ~ C°~(79), define the averaged function ,4 by 

= [ A ( h .  p ) d h ,  7~(p) 
tt 

where "' dh" represents the bi-invariant volume form. 

Proposith)n 3. I f  A c N ( I ( K)  ) then A and A belong to the same equivalence class in AK.  
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P r o o f  From Lemma 2 it follows immediately that ,4 is also in N ( I ( K ) ) :  

{ A ' K ~ } = f { A ° c l g h ' K ~ } d h = f  H 

It remains to show that A - fi, ~ I ( K ) .  Note that 

A - A ----- f(A - A o CI)h) dh .  
d 

H 

We will see that the integrand is a (C°C('P) -) linear combination of  generators of 1 (K) ,  

with coefficients that are integrable functions of  h E H.  To do so, it is convenient to show 

that these functions are continuous (in fact smooth) on a subset N that differs from H by a 

set of  measure zero. We have a bi-invariant Riemannian metric on H. For each vector ~ in 

the unit sphere Te I H at the identity e, let m(s e) be the distance from e to the cut point along 

the geodesic exp(s~).  Let E = {st:  ~ E TeI H and 0 < s < m(~)}, and let N = exp(E) .  By 

[6, Vol. II, Theorem 7.4, p.100], H is a disjoint union of  the open set N, the cut locus, and 

{e}. Omitting e and the cut locus has no effect on the integral, as the cut locus has measure 

zero. (It can be identified with the graph of  m, which is a continuous function [6, Vol. II, 

p.98].) Thus, 

a - fii = f(a - A o q~h) dh. 
t ]  

N 

The value of A - A o q~h at h = exp(s ( )  can be found by integrating along 

h ( t ) = e x p ( t ~ ) ,  0 < t  < s ,  

a curve in N from e to exp(s~).  The derivative of  A - A o ~h along this curve is given by 

d d 
d-~(A - A o qbh(t))lt=t0 = - - - -~  ( A o Cl)h(to) o Cl)hit_to) )lt=to 

= - { a  o cl)h(to), J~} = - B i ( p ,  h ( t o ) ) K i ( p )  

by Lernma 2. Note that A - A o ¢'h(t) = 0 at t = 0, so integrating along h ( t )  shows that 

(A -- A o qbh) is in 1 (K) .  Therefore its integral over N is also in the ideal; i.e. A - ,4 E 1 (K) .  
[ ]  

Proposition 3 is a generalization of  Proposition 5.12 in [ I ], and the proof just given avoids 

the power series argument used in the reference. 

The hypothesis that H is connected may be weakened; the proof  still applies if there is 

a connected subgroup of  G u containing H.  An example shows that the latter condition is 

necessary. For some values of /z  in s l ( 2 ,  II~)*, the isotropy subgroup G~z has two connected 

components.  One may pick a two-element subgroup of  H,  one element in each component 

of G~, for which Proposition 3 fails (and the main result must be modified as outlined at 

the end of  Section 3). 
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In the case of interest, H is a maximal compact subgroup of a connected G#. The 
considerations of the preceding paragraph are then moot, because H also is connected. The 
next proposition reviews this and other properties of this case. 

Proposition 4. Fix H to be a maximal compact subgroup of  G u. Then H is connected. Let 

B be the bundle (G, (9, G1z ). Then there is a set $ of sections of B satisfying the following 

conditions: 

(a) Uses  domain(s) = O. 
(b) If  s ~ S and # ~ domain(s) then s(#)  = e, the identity in G. 

(c) The transition functions for S take their values in H. 

Proof By assumption G~ is connected, so H is, also [4, Theorem 6]. The structure group 
of B can be reduced to H [6, Vol. I, p.59]; that is, there is an embedded subbundle with 
structure group H [6, Vol. I, p.53]. By composing with the right action of a single element 
of G~, if necessary, this subbundle may be chosen to include e. Sections of the subbundle 
automatically satisfy c, and can be chosen to satisfy a and b. [] 

Let N ( I ( K ) )  t4 indicate the H-invariant functions in N ( I ( K ) ) .  Fix a set S as in Propo- 
sition 4, and define 

~r • N ( I ( K ) )  n ----> C°°(~)  

by 

gt(A)(p, v) = A(s(v) -I • p). (8) 

By the H-invariance of A and Proposition 4(c), the value of ~p (A) given by (8) is independent 
of the choice of section s e S. 

If lp is to give the desired isomorphism of the reduced algebras, then the image of lp must 
lie in N(I(J~)). This is a global statement on 7 ~, which presents some difficulty because 
formula (8) gives ~p(A) only locally. Fortunately, it suffices to compute locally, because 
1(7) is finitely generated (by ~ . . . . .  ~ ) .  Given a function ,4 in C~(~~), suppose that 
every point ~ in 7 ~ has a neighborhood H on which there are functions A' ~ C°c(H) such 
that 

AI~ = ,~i ~//IH. (9) 

Let the phrase ".4 is in 1 (J)l~"' or ".4 is in l ( J )  locally (on/~)" describe the situation in 
(9). A partition of unity subordinate to the collection of neighborhoods/~ allows one to 
patch together the local functions .~i, thus showing that .4 ~ 1(7); that is, if ,4 is in 1(7) 
locally on some neighborhood of every point, then .4 is in I ()") (globally). The necessary 
local formulas are given by the following lemma; then Proposition 6 gives the global result. 

Lemma 5. Let s be a fixed local section of B with domain lg c O. Let ~ be a fixed element 

of g. Then the following statements hold for functions o f (p ,  v) ~ H = IA x 79 c_ ~: 

(a) K~ o 4~s(v)-j (p) ~ I(7)1t7. 
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(b) Suppose A E N ( I ( K ) ) .  Then 

{A o ~s(v) - ' ,  J~I(P) E I(~)lff .  

(c) Let A E C~C(79), and define Fp = ~ ( A )  o ip, that is 

Fp(v)  = A ( s ( v )  - !  • p )  (for v E bt). 

Regard ~ as a funct ion on .q*. Then 

IFp, 81°(v)  6 I ( J ) l f f .  

Proof. 

(a) Recall that the fibers of  B are cosets of  G u, and (for any section s of B) s (v )  • lz = v. 

By the definition of  K and the equivariance of  J ,  

(K o ~s(v)- ' (p) ,  ~) = (J (s (v)  -1 " P) - / z ,  ~) ---- (s(v) -1 • ( J (p)  - v), ~) 

= ( J ( p  - v), ads(v)~) = ( 'J(p,  v), ads(v)(~))  E l ( f ) ] ~ .  

(b) The Poisson bracket on 79 is computed with v held constant. Thus Lemma 2 applies to 

give 

{A o dps(v)_j , Js}(p) = Ai (p,  s ( v ) - l ) K i  o ~s(v) ~ (P),  

which is in I ( J ) [ f f  by part (a). 

(c) The Hamiltonian vector field of  the function ~ on .q* generates the flow exp(t~) • v on 

O. Therefore 

d 
{Fp, ~}O(v) = ---~Fp(exp(t~) .  v)lt=0 

d 
= - ~ A ( [ s ( e x p ( t ~ )  • v)] -1 • P)lt=0 

d 
= - - a  o q~s(v)-i (s(v)  • [s(exp(t~) • v)] -1 • P)lt=0 

dt 
= {a  o Cl)s(v)_,, J(}(p) ,  

where ( = (d /d t ) s (v) [ s (exp( t~)  • v)] - I  It=0. By part (b), this lies in I (~)1~'. [] 

Proposi t ion 6. I f  A E N ( I ( K ) ) H, then ap ( A ) ~ N ( I ( "J) ). 

Proo f  It suffices to show that {~p(A), ~ } ~  is in 1 ()"). Note that 

o iv = J~ - (v, ~) = J~ + constant 

and 

o ip = J¢ (p) -- ~ = --~ + constant 

(interpreting ¢ as a function on .q*). Also observe from (8) that 

~ ( A )  o iv = A o q~s(v)-I, 
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and that 7z(A) o ip is the function Fp in Lemma 5(c). Thus by definition of the Poisson 

bracket on 79 , 

{@(A), ~ } ~ ( p ,  v) ----- {~/,(A) o iv, ~ o iv}(p) - {~p(A) o ip, ~ o ip}° (v )  

= {A o dps(v)., J~}(p) - {Fp, ~}°(v) .  

By Lemma 5(b) and (c), each of these terms is in l ( J ' )  locally, and therefore globally by 

the partition of unity argument. [] 

Let H be the projection from N ( I  (J')) to A s .  By Proposition 6, the composi t ion/7  o ~p is 

defined. The map ~p depends on the choice of  the set of sections S: although S is chosen so 
that the transition functions take values in G u, the individual sections in general will not be 

so restricted. However, the next two results show that the composite H o ~ is independent 

of  the choice of  S. 

Proposition 7. I r E  E N ( I ( J )  ) and E o iu - O, then E ~ l ( J). 

Corol la ry  8. The map 17 o ~ is independent o f  the choice o f  the set o f  sections S satisfying 

the conditions in Proposition 4. 

Proof  o f  Corollary 8. Construct ~p as usual and construct ~ in the same way but from a 

different set S of  sections (which also satisfy the conditions in Proposition 4). Let A 
N ( I ( K ) )  H, and let /~ = 7z(A) - ~ (A) .  By Proposition 6, kS 6 N ( I ( J ) ) .  By Proposition 

4(b), s (# )  = e = g0-t). Then 

E o iu(p)  = A ( s ( # )  -I  . p)  - A(~'(#) - j  . p)  = A ( p )  - A (p )  -- O. 

Then by Proposition 7, if7 6 1() ') ;  that is, ~/,(a) and ~ ( a )  are equal mod l ( J )  and thus 
17 o ~, = I-I o ~ .  [] 

Proof  o f  Proposition 7. For a neighborhood/,/  c O, define a function g on [1, 0] × H to 
be "t-piecewise smooth" (in (t, v)) if [0, 1] can be divided into a finite number of  closed 

subintervals [ti, ti+l] such that g is smooth on every [ti, ti+l] × g/. For every point v0 in 
O, there is a neighborhood H of v0 and a continuous, t-piecewise smooth function g with 
values in G such that g(0, v) = e and g ( l ,  v) - v = #.  (For example, p ick / , / to  be convex 
and pick g so that g(t, v) • v shr inks/g to a single point v0 as t runs from 0 to ½. Then 

f o r t  E /½ ,1 / ,  pick h(/)  to be a path from the identity e in G u to a p o i n t i n t h e c o s e t  
L J 

corresponding to v0, and set g(t,  v ) =  h ( t ) - l g  (½, v) . )  Letting g(t,  v )ac t  on 7 ~ creates a 

(continuous and t-piecewise smooth) time-dependent flow with generator 

0 
~7[g(t, v) . (p, v)] = c i  (t, v)~i~(g(t ,  v) • (p, v)) 

for some t-piecewise smooth functions C i . Then 



J. Arms ~Journal of Geometry and Physics 21 (1996) 81-95 91 

ff-~E(g(t, v) . (p, v ) ) =  dE ( ~ [ g (  , v) . (p, 
! 

= c i ( t ,  v)dE(~i~(g(t ,  v) .  (p, v))) 

= c i ( t ,  v){/~, ~}(g(t, v) • (p, v)). 

But E 6 N(I  ()~)) and J is equivariant, so there are t-piecewise smooth functions D i o n  

[1,0] ×/~ such that 

0 -  
-~E(g(t ,  v) . (p, v)) = Di(t, p, v)Ji(p, v). 

Note that 

E(g(1, v)- (p, v)) = /~ (g ( l ,  v)- p, #), 

which by assumption is identically zero. Therefore 

1 

0 

[J 1 = O -  f D i ( t , p , v ) ~ ( p , v ) d t  - - - D i ( t , p , v ) d t  ~ ( p , v ) .  

0 0 

This shows that E is in l ( J )  locally, and therefore globally by the partition of unity argu- 

ment. [] 

The reduced algebra .AK is a quotient of the domain o f /7  o ~ by the intersection of that 
domain with 1 (K). It remains to show that/7 o ~ descends to a map on `AK with the desired 
properties. 

Theorem 9. The map ~p induces a well-defined Poisson algebra isomorphism 

q' " AK ~ .As, 

which is independent of the choice of the set S of sections satisfying the conditions in 
Proposition 4. 

Proof It suffices to verify the following statements. 
(i) If A ~ [I(K) f) N(I (K) ) ]  n then ~(A) E l ( J ) .  As ~p is linear, combined with 

Proposition 3 this implies that /7  o ~p induces a well-defined map qJ : `AK --+ .As. 
Independence of the choice of S follows from Corollary 8. 

(ii) The composite/7 o lp is a Poisson map, so qJ is a Poisson map. 
(iii) If ~(A) 6 l ( J ) ,  then A ~ I (K) ,  so ~ is injective. 
(iv) Given ,4 c N(I(J ')) ,  there is a function A c N ( I ( K ) )  14 such that ~p(a) is in the 

equivalence class of ~,, so qJ is also surjective. 



92 J. Arms~Journal of Geometry and Physics 21 (1996) 81-95 

For (i), note that A = A i K i  for some functions A i E C°°(7°), so by (8) ~p(A) is given 

locally by 

~p(A)(p, v) = (A i o (Ps(v)-l )(Ki o (Ps(v)-i ). 

By Lemma 5(a), the latter factor is in I ( ) ' )  locally, so by the partition of  unity argument, 
~ ( A )  is in I (J'). The rest of  (i) follows as stated. 

For parts (ii) and (iv), it is useful to pick a particular basis ~1 . . . . .  ~n for .q. Recall that 

the orbit 69 is symplectic. For a given v0 in 69 choose the ~i for i = 1 . . . . .  m = dim(O) to 

be canonical at v0; i.e. so that 

In particular the set of  ~i will be a coordinate system on a neighborhood of  v0. For i > m, 

choose ~i to belong to gv0, the stabilizer algebra of  v0. 
For the first clause of  (ii), it suffices to show that if Ai,  A2 ~ N ( I ( K ) )  H, then 

{0(AI) ,  ¢z(A2)}~ - ~({A1, A21) e I (J ' ) .  (10) 

Note that {AI, A2} ~ N ( I ( K ) )  H, because the action of  H preserves the Poisson bracket, 

so the second term of (10) is well defined. This second term is 

¢z({Al, A2})(p, v) = {Aj, A2}(s(v) -1 • p). 

The first term in (10) is given locally by 

{~(A1) o iv, ~(A2)  o ivl(p)  -- {~(A1) o ip, ~O(A2) o ip}°(v)  

= {AI o ~s(v) ', A2 o ~s(v)-' }(P) - {FI, F2}°(v),  (10a) 

where Fi(v) = A i ( s ( v )  -1  • p ) .  The action q~ preserves the Poisson bracket on T', so the 

first term in (1 0a) cancels the second term in (1 0), and the problem reduces to consideration 

of  {Fi, F2} ° .  Fix a point v0 and pick a basis ~i as above. Let X be the Hamiltonian vector 
field for F2. On a neighborhood of  v0, 

m 

m 0 = Z { ~ i  ' F2}O 0 
X = Z X(~i) '~ i  O~-"~ 

i=1 i=1 

and therefore 

m 

{Fi, F2} ° -~ dF1 (X) = Z { ~ i ,  F2} ° dF1 (O/O~i). 
i=1 

By Lemma 5(c), {~i, F2} ° is in l ( J ' )  locally near vo. As vo was arbitrary, the partition of  

unity argument shows that {FI, F2} ° is in l (J ' ) .  The Poisson structure on .AK descends 
from that on N ( I  (K)) ,  so the final conclusion of  (ii) follows. 

In (iii), from ap(A) c l ( J ' )  it follows that 

ap(a)(p, v) = ~i (p, v)(Ji (p)  - (v, ~i) ). 
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By Proposition 4(b), s (#)  = e, so 

A(p) = A(s(#) - l  • p) = ~t(A)(p, IX) 

= A'(p, lz)(Ji(p) - (/z, ~i)) = A'(p,  #)Ki(p); 

that is, A E I ( K ) .  

For statement (iv), the obvious candidate for A is ,4 o iv; however, this function may not 

lie in N(I  (K)), so it must be modified as follows. Pick a basis ~i as described above, but 

with v0 -- ~. Note that for each i < m, there is one and only one j ---- f ( i )  such that 

(/2, [~f(i), ~i]) = {~f(i), ~i}o(/£) = 4-1, 

and for other values of j ,  

(#, [~j, ~i]) = {~j, ~i}°(/z) = 0. (1 l) 

Also (1 l) holds for i > m: the generating vector field of  the coadjoint action is [8] 

(~i)O(IZ) = -ad~#  = (#, [ ,  ~i]) = 0 (12) 

because ~i c ,qu for all i > m. Let 

m 

C = Ao  itz + Z AJKj'  (13) 
j=l  

where 

aJ(p) = - ( / z ,  [~f(j), sejl){,4 o ip, ~f(j)}o(#). 

The computation below shows that this function C belongs to N (1 (K)),  and that averaging 

C over H gives the desired function A. 

Using the equivariance of  J and the fact that J and K differ by a constant, one computes 

that 

{Kj, Ki}(p) = (J(p), [~j, ~i]) = (K(p) + tz, [~j, ~i]). 

Thus by reasoning as in the proof of  Proposition 6, we have 

m 

{C, Ki}(p) = {,4o ilz , Ki}(p) + ~---~[{A j, Ki}Kj + AJ{Kj, Ki}](p) 
j=l  

= {-4, J//I~(u, P) - {Ao ip, sei}°(U) 
m 

+ Z [ { A J ,  Ki}Kj + AJ(K, [~j, ~i]) + AJ(I z, [~j, ~i])](P). 
j=l  

The third and fourth terms are manifestly in N(I  (K)). The first term belongs to I ('f) o i u = 
I (K) ,  because ,4 6 N(I(Y)) .  If  i > m, then the second and fifth terms vanish by (12). If 
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i < m, then the fifth term vanishes except for the summand with j ----- f ( i ) .  Note that if 

j = f ( i ) ,  then i = f ( j ) ,  and 

(/..t, [~f(j), ~j]) : (~, [~i, ~j]) : --(#, [~f(i), ~i]> = -'l-l. 

Thus the fifth term reduces to 

-(/z, [~f(j), ~j]){:~ o ip, ~f(j)}°(Iz)(#, [~f(i), ~i]) = --1-{/~ o it, , ~i}o(#), 

which cancels the second term and thus shows that C c N(I(K)). 
Let A = 6". It remains to show that ~p(A) and ,4 belong to the same equivalence class, 

i.e. that 7z(A) - A 6 1(7).  By Proposition 3, A ~ N ( I ( K ) )  and A - C E I ( K ) .  Then 

A - A o i u = (A - C) + (C - A o itz) E I (K )  

by (13), so 

OP(A) - A)  o i u = a - A o itz = Ci Ki . 

Define 

E ( p ,  v) = o k ( a )  - A ) ( p ,  v) - C i (p ) ' J i (p ,  v). 

Then /~ o i£ ~ 0. Also /~ is in N ( l ( ' f ) ) ,  because ~k(A) E N ( I ( ' J ) )  by Proposition 6, 

E N ( I ( J ) )  by assumption, and ~ E N ( I ( J ) )  by equivariance. Thus by Proposition 7, 

~ I(J~). But 

OP(A) - A -  E ) ( p ,  v) = C i ( p ) J i ( p ,  v) E l ('J), 

so ~ ( a )  - ,~ E 1(7).  [] 
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